Bayesian Networks for the Prediction of Ranking in Male Tennis Players

> Dr. Michael Bane Dr. Stuart Morgan Prof. Ann Nicholson Dr. Machar Reid

Overview

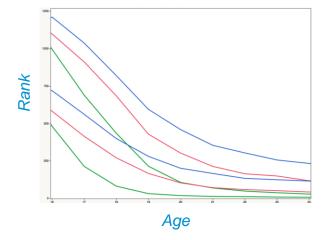
- Athletes only break even if ranked within the top 100.
- Investment in athletes is big business, LTA and TA highperformance expenditure of £12M and \$24M respectively
- Can we improve our return on investment?

Data

THIS W	/EEK » F	Results)) Draws	& Schedu	ilo 33 TV
		Pil	3	REL
ME SCORES & STATS	TOURNAMENTS TICKETS PLAYERS	BANKINGS	NEWS	РНОТС
ANKINGS HOME	Emirates ATF	-		~~
NGLES RANKINGS				G 5
ARATES ATP	DEFINING EXCELLEN	NCE SIN	CE	1973
DUBLES RANKINGS	11.11.2013 + Top 100 + All Cou	untries	\$	Go
UBLES TEAM RACE TO	Rank, Name & Nationality	Points	Week Change	Tourn
TCH STATS LEADERS	1 Nadal, Rafael (ESP)	13,030	0	20
	2 Djokovic, Novak (SRB)	12,110	0	18
KINGS FAQ	3 Ferrer, David (ESP)	5,800	0	25
PROFILE	4 Murray, Andy (GBR)	5,790	0	19
	5 Del Potro, Juan Martin (ARG)	5,255	0	21
200	6 Federer, Roger (SUI)	4,205	1	19
AL S	7 Berdych, Tomas (CZE)	4,180	-1	24
	8 Wawrinka, Stanislas (SUI)	3,730	0	25
	9 Gasquet, Richard (FRA)	3,300	0	25
	10 Tsonga, Jo-Wilfried (FRA)	3,065	0	21
	11 Raonic, Milos (CAN)	2,860	0	24
	12 Haas, Tommy (GER)	2,435	0	26
		2,290	0	24
	13 Almagro, Nicolas (ESP)			
AGING	13 Almagro, Nicolas (ESP) 14 Isner, John (USA)	2,150	0	26
RAGING			0	26 26

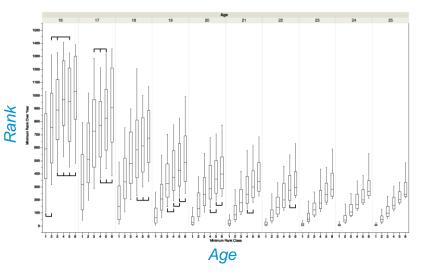
- Data is sourced from weekly ranking lists provided by the ATP.
 - Data relates to the accumulated ranking points and net ranking.
- Date of birth of athletes also sourced.
- Rankings obtained as far back as 1973 (data is complete from 1984)
- 2338 athletes whom achieved at least Top 500 (80/20 train-test split)

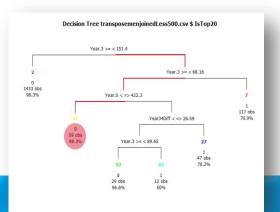
Putting a toe in the water



← The 25th/75th quartiles of ranking, conditioned on best career ranking (Top 10/50/100). Prosecutors fallacy at play!

➔ Trends have been modelled by ANOVA



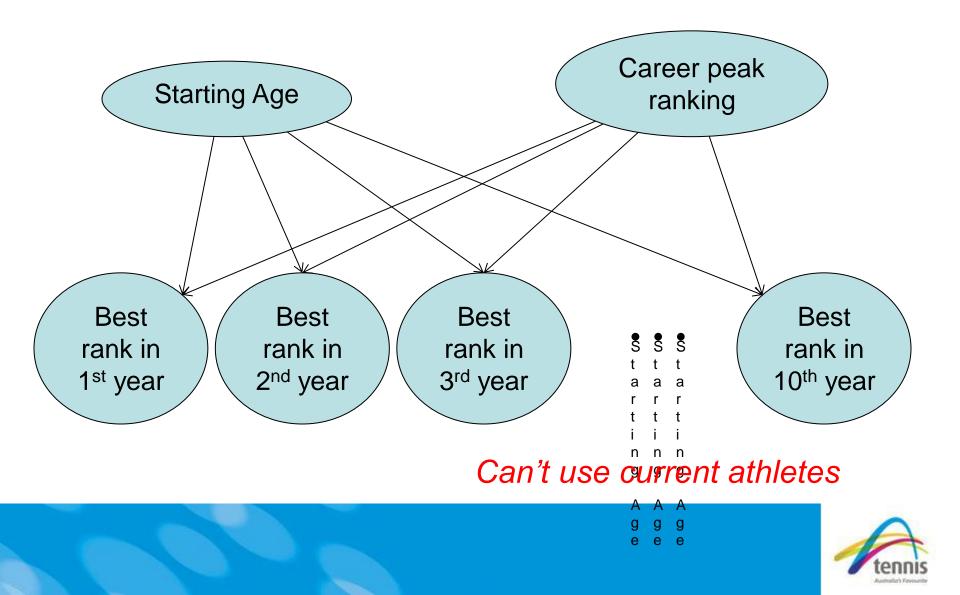


Contract Contract

Why BNs

- Intuitive, relative to other machine learning techniques.
- Versatile applications.
- Works well with variable amounts of data.
- Simple to implement to a wide audience.

Naive Network

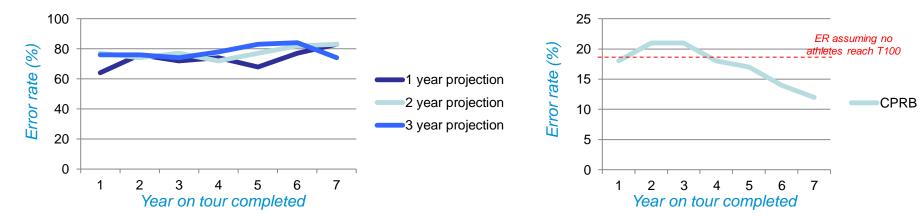


Naive Network

Demonstration

Naive Network (results)

The Bad



The Good

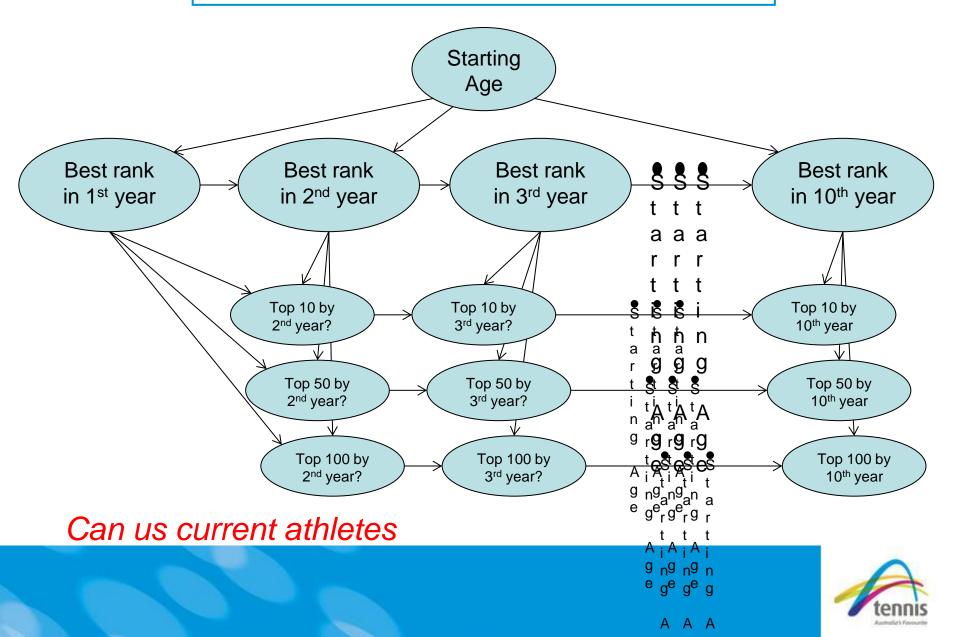
Calibration

Y1-2,+1	0-0.5: 0 0.5-1: 0 1-2:	0.279 2-5:	2.46 5-10:	6.76 10-15:	14.4 15-20:	13.2 20-30:	26.5 30-40: 34.7
Y1-3,+1	0-0.5: 0 0.5-1: 0.844 1-2:	1.18 2-5:	3.33 5-10:	6.8 10-15:	12.9 15-20:	20.6 20-30:	24.4
Y1-2,+2	0-0.5: 0 0.5-1: 0.379 1-2:	1.3 2-5:	2.73 5-10:	6.89 10-15:	11.9 15-20:	18.4 20-30:	26.7 30-100: 50
Y1-7,+2	0-0.5: 0 0.5-1: 0.413 1-2:	0.498 2-5:	2.29 5-10:	5.69 10-15:	14.2 15-20:	19.4 20-30:	23.7 30-100: 66.7
Y1-3,+3	0.2-0.5: 6.52 0.5-1: 0 1-2:	4.65 2-5:	3 5-10:	8.61 10-15:	11.4 15-20:	15.9 20-30:	22.6 30-40: 25 40-100: 50

Times surprised

Ex.	<1%	<10%	>90%	>99%
Y1-2, +1	0 (0/437)	2.94 (58/1974)	0 (0/0)	0 (0/0)
Y1-3, +1	0.53 (2/378)	3.66 (70/1911)	0 (0/0)	0 (0/0)
Y1-2, +2	0.19 (1/526)	3.21 (62/1930)	0 (0/0)	0 (0/0)
Y1-7, +3	0.21 (1/473)	2.56 (43/1681)	0 (0/0)	0 (0/0)
Y1-3, +3	1.57 (8/511)	3.30 (28/848)	0 (0/0)	0 (0/0)

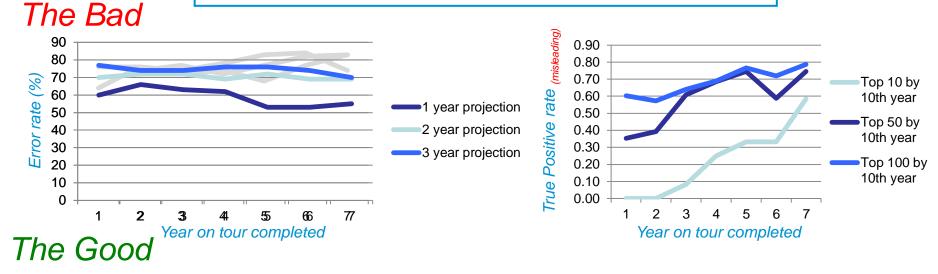
Temporal Network



Temporal Network

Demonstration

Temporal Network (results)



Calibration

Y1-2,+1 9.64 | 10-15: 9.52 | 15-20: 18 | 20-30: 28.2 | 30-40: 0-0.5: 0 |0.5-1: 0.14|1-2: 0.607 2-5: 2.69 5-10: 34.9 40-50: 34 Y1-3,+1 0-0.5: 0 0.5-1: 0 | 1-2: 0.836 2-5: 2.05 | 5-10: 9.92 | 10-15: 6.11 | 15-20: 24.8 | 20-30: 28.2 | 30-40: 35.6 | 40-50: 44.3 | 50-100: 48 | Y1-2,+2 0-1: 0 | 1-2: 0.563 2-5: 2.26 | 5-10: 8.63 | 10-15: 13.4 | 15-20: 20.4 | 20-30: 23.7 | 30-40: 32.9 | Y1-7,+2 0.901 5-10: 5.38 | 10-15: 13.3 | 15-20: 21 | 20-30: 29.2 | 30-50: 43.2 | 0-2: 0 2-5: 2-5: Y1-3,+3 0 **1.19** | 5-10: 5.54 | 10-15: 13.4 | 15-20: 20.5 | 20-30: 0-2: 26.3

Times surprised

Ex.	<1%	<10%	>90%	>99%
Y1-2, +1	0.12 (1/845)	2.29 (73/3181)	0 (0/0)	0 (0/0)
Y1-3, +1	0 (0/691)	2.46 (78/3175)	0 (0/0)	0 (0/0)
Y1-2, +2	0 (0/120)	3.73 (107/2870)	0 (0/0)	0 (0/0)
Y1-7, +3	0 (0/0)	3.14 (55/1750)	0 (0/0)	0 (0/0)
Y1-3, +3	0 (0/0)	3.13 (73/2329)	0 (0/0)	0 (0/0)

Problems

- Athletes follow junior/senior/mixed pathways throughout their early career
- Lack of variety in data. Relying on historical accumulation.
- Nature of benchmarking implies only rank can be used.
- Very long term predictions.
- Variability in ranking pathways is huge.

Successes

- We can learn from history, and objectively calculate accurate probabilities of events
- An improvement from previous prediction attempts (there are none!)
- Identify how poor ranking is as a predictor success at peak

Acknowledgements

Thanks for listening

